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SUMMARY 

The fragmentation of linear polyethylene of high molecular weight, of nor- 
mal alkanes, and of other nonbranched poly- e- olefins in a pyrolyzer con- 
nected with a gas chromatograph was studied previously. From the evaluati- 
on of the fragments longer than Cll or than the respective pentamers a 
random decomposition process was suggested for these polymers. This pro- 
cess was described with characteristic cleavage probabilities for the C-C- 
bonds in the backbone of the chain. It is not possible to apply this simp- 
le model to the decomposition of normal alkanes without consideration of 
the volatilization. An approach to this problem is presented in this paper. 

INTRODUCTION 

In the previous paper i the thermal decomposition and volatilization from 

a pyrolyzer employed in the analysis of the primary structure of polymers 
was studied. To measure the effect of chain length upon degradation and 
volatilization, the normal alkenes n- C18, n- C24, n- C32 and n- C40 were 
subjected to pyrolysis. The fragment distributions demonstrate very clear- 
ly a convergence to the fragment distribution of linear polyethylene of 
high molecular weight, when the chain length of the normal alkane is in- 
creased. 

Fragments have also been detected up to the range of C55- C60 from pyroly- 
ses of high molecular polyisobutylene and polypropylene. It has been shown 
that this limit is not characteristic for the mechanisms of decomposition 
and volatilization, but is merely symptomatic of absorption processes in 
the flow system for carrying the fragments through a gas chromatograph. 
These effects of absorption, which were suppressed for fragments less than 
C45, are not a subject of this present study. 

In contrast to the poly- ~- olefins with a whole spectrum of fragments 
there are many polymers which decompose by unzipping to monomers 2. It can 
be considered that the short fragments are readily volatilized after their 
generation 3. Also, in such polymers the volatilization is not the rate 
determining step in the whole degradation. However, if there is a great 
difference in the vapor pressure of the various fragments, the simulta- 
neous volatilization has to be considered in addition to the thermal de- 
composition. 

A short version of this paper was presented by M. S. at the 3rd Internati- 
onal Symposium on Analytical Pyrolysis, Amsterdam 1976. See "Analytical 
Pyrolysis" Ed. C. E. R. JONES and C. A. CRAMERS, Elsevier Amsterdam (1977) 
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For linear polyethylene a theory of random cleavages and of volatilization 
at a constant temperature was established by SIMHA and WALL 4. With 2x ;as 

the chain length of the original polymer a set of 2x coupled differential 

equations must be solved. Since 2x may be very large, an approach was made 

by introducing a critical chain length L to separate the region of pure de- 
gradation above L from that of degradation and volatilization as well. This 

approach is also usefull to discriminate the the pyrolysis of high molecu- 
lar weight polymers (long chains) from the pyrolysis of oligomers (short 

chains). A further simplification was made by neglecting the combination of 

fragments. There was no direct evidence of this, but recent pyrograms of 

normal alkanes have shown that fragments longer than the initial chain 
length 2x are indeed negligible 1 

The theory of SIMHA and WALL will be discussed in more detail in Section 

II. The experimental setup used in their study was rather simple: An evacua- 

ted system with a furnace surrounding the polymer, and a cold trap for the 

collection of the volatilized fragments. It was only possible to obtain 
average values for the molecularweight distribution in the trap. Thus, 

little emphasis was put on the direct course of the fragment distribution. 

Basically the same model can be applied to the present day pyrolyzer and 

gas chromatograph: The pyrolyzer is the furnace and the g. c. separation 

column corresponds to the trap. However the column is a more sophisticated 
tool to determine the distribution of the volatile decomposition products. 

Since polyethylene (PE) has been most extensively studied among poly- ~- 
olefins 5 it was choosen to demonstrate the distribution of the volatile 
decomposition products. This application of the theory will be presented 

in a following paper. 

T H E O R Y  - I. RANDOM DECOMPOSITION, WITHOUT VOLATILIZATION 

According to a calculation first made by W. KUHN 6 for linear polymers, 
the fragment distribution follows from 

= M " s 2 . (i - s )c-i ( i ) 
Nc o o 

where N c is the number of fragments with length c in the polymer 
< < 

(I ~ c = 2x) . It is considered here, that the length of the polymer chain 
2x is very large compared to the length c of the fragments. 

M = Z ~ �9 c is the number of all carbon atoms present in the fragments. 
c 

This number is approximately proportional to the initial weight of poly- 
mer. s o denotes the cleavage probability for a C-C- bond (O ~ s o ~ i). 

7 For short chains with a finite length 2x one obtains in a similar way 

)c-1 
NC = So (i - So �9 [2 + S o (2X -I -c)] M/ 2X , C < 2X ( 2 ) 

Nc = (I - So)2X-i �9 M/ 2x ( 3 ) 

Calculations with these equations were originally made to study the ran- 
dom decomposition of cellulose. 

Apart from a normalizing factor, Eq. (i) was found to desribe properly the 

distribution of volatilized fragments larger than Cll from linear polyethy- 
lene of high molecular weight. With s as the cleavage probability, the 
distribution was proportional to (l-s) c-I . Thus, it was concluded that a 
random decomposition process occurs 8. The same was found to be the case 
in other poly- e- olefins 9 
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However, in the studies the effect of volatilization was not considered, 

which is why it is not possible to fit Eqs. (2) and (3)to the measured 

fragment distribution of normal alkanes i, 8. The reason for this discre- 

pancy is clear, since the measured distribution is that of volatilized 

fragments and not of the fragments of the residue. Thus, what has been 

proven as a good model to describe the degradation of high molecular 
weight polymers fails when applied to short chains or oligomers. 

II. RANDOM DECOMPOSITION AND VOLATILIZATION AT CONSTANT 
TEMPERATURE 

4 
The first order kinetic equations given by SIMHA and WALL for an open 

system with a random decomposition and volatilization of the products are 
rewritten in this paper in the following form 

d N (t) z=2x-c 

c 2k ( Z N (t)) - k �9 (c-l) �9 Nc(t) - Pc " Nc(t) ( 4 ) 
d t c+z 

z=l 

d N (t) 
c 

d t Pc " Nc(t) ( 5 ) 

N (t) and Nc+z(t) denote the number of molecules at time t with length 
c c = < c+z = < 2x in the polymer residue, N (t) is the num- 

ber of molecules vaporized. 2x is the chain length of the originally mo- 

nodisperse p~lymer, k is the rate constant for splitting a C-C bond in 

any of the N (t) molecules and is - a random cleavage is assumed - inde- 
pendent of c,Cc+z or of the position of t~e link, and p represents the 

c 
rate constant for the evaporation of the N molecules in the residue. 

c 

With time constants k and Pc Eq. (4) has the following solution 

r=2x-c 
N (t) = Z H �9 exp ( �9 t) 
c r=o c+r, c lc+r 

lc+r = - ((c+r-l) �9 k + Pc+r ) 

The coefficients H are determined for 
c+r, c 

equation 
r 

2k 
H = �9 (~ H ) ; 
c+r,c ~ - ~ c+r, c+z 

c+r c z=l 

The diagonal elements H 
cc 

the boundary condition 

( 6 )  

< < 
0 = r = 2x-c ( 7 ) 

r#O from the characteristic 

~. # ~  ( 8 )  
c+r c 

of the triangular matrix H are derived from 
at t = 0 (c < 2x) 

N (0) = 0 ( 9 ) 
c 

( Io ) = N2x(O) ( ii ) 

2X--C 

H = - Z H 
CC r= 1 c+r,c H2x,2x 

where No (0) is the initial number of polymer chains. With Eqs. (8), (IO) 

and (ll)Z~ll the x(2x+l) elements of the matrix H can be calculated. 

The number of molecules which are volatilized at time t follows from in- 
tegration of Eq. (5) t 

Nc(t) = ~ Pc " Nc(t') dt' ( 12 ) 

If a complete volatilization of all polymer at a constant temperature is 
considered for t § ~ , then Eq. (12) approaches 
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2x-e Hc+r, c ) 

Nc = Pc ( 7. -I 
r=O c+r 

4 
A. Long Chains 

; N = N (t= ~) ( 13 ) 
c c 

If 2x is very large, a critical chain length L can be introduced with 

Pc = O for c ~ L . In this region (L ~ c ~ 2x) only random scission oc- 

curs and no volatilization �9 Then from Eq. (8) follows that 

H = (2x-c+l) (O) ( 14 ) Hc+l, c -N2x cc �9 N2x = -2-(2x-c) (O) ( 15 ) 

Hc+2, c = (2x-c-I) " N2x(O) ( 16 ) Hc+r, c = 0 , for r ~ 3 D 

The transition 2x ~ ~ can be made with the finite initial weight of poly- 

mer M = 2x �9 N2x(O). 

Usually the kinetic equations are checked with the number average chain 

length, which is defined as 

2x 2x 

c (t) = ~ c " N / Z N ( 17 ) 
n c c 

c=l c=I 

If the amount of volatilizable fragments N (t) with c < L can be neg- 
c 

lected, then from Eq. (6) 

I / c (t) = s + (1-s) / 2x ( 18 ) 
n o o 

Here, as in section I, s is the fraction of bonds w~ich have been clea- 

ved. The calculation yields the same equations for N (t) as Eqs. (1) - 
c 

(3), when s is written as 
o -kt 

s = i - e ( 19 ) 
o 

To calculate the distribution of the volatilized fragments N , the foll- 
c 

owing approximation in Eq. (8) can be made 

Hc +r,c = -2k �9 Hc+r,c+r / (Pc+r - Pc ) , for c and c+r<L . ( 20 ) 

Eq. (20) is also valid for c+r=L and c+r=L+l if Pc+r is cancelled in 

the denominator �9 For all c+r>L+1 H = O. 
c+r,c 

Then Eq. (13) yields with M = 2x �9 N2x(O) : 

N 2M for c<L L~2x ( 21 ) 
c (L-I)L ' 

This result - that N becomes approximately independent of the fragment 

length c and of 2x -Chas already been discussed by SIMHA and WALL 4. It 

was used for an estimation of L, which was reported as L = 72 for linear 

polyethylene. 

B. Short Chains 

For 2x < L , P2x is not negligible compared to k(2x-l). The parent peak 

N 2 can be measured then. From ~q. (ii) and Eq. (13) - with c=2x and 

r=~ - follows 

P2x ( 22 ) 
N2x = ~2x (O) " (2x-I)" k+P2 x 

N2x/N2x(O) is the fraction of polymer volatilized without decomposition. 

The distribution of the fragments with c<2x can be calculated in the same 
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way from Eq. (13) with the approximation in Eq. (20) 

2.k 
N = N2x(O) �9 -- , c < 2x ( 23 ) 
c P2x 

N becomes independent also of c, as in Eq. (21). 
e 

III. RANDOM DECOMPOSITION AND VOLATILIZATION AT VARIABLE 

TEMPERATURE 

From the temperature risetime measurements reported previously i it was ob- 

vious that a constant temperature is not the general case in pyrolysis ex- 

periments. Since k and p are functions of the temperature, they are 

also functions of time in t~e case of a variable temperature. In this sea- 

tion the influence of the finite risetime of the temperature is discussed 
in paticular. 

A. Long Chains 

With the assumptions made in the preceding section for c above the criti- 
cal length L Eq. (4) is replaced by 

d N (t) 2x-c c ~ ru 
dt 2k(t) ( 7. Nc+ z(t)) - k(t) - (c-l) �9 N (t) 24 ) 

z=l c 

For this equation the solution may be written as 

2x-c 

N (t) = 7 H (t) �9 exp(le+r(t) " t) 25 ) 
c c+r, c 

r=O 

Ic+r(t) = - (c+r-l) �9 k(t) 26 ) 

Combination with Eq. (24) yields a differential equation 

Hc+r,e(t) + Hc+r,c(t) {Ic+r(t) - ~c(t) + ~c+r(t) " t} 
r 27 ) 

= 2k(t) Z Hc+r, c+z (t) 
z=l 

(t) and 1 (t) are the respective first order derivatives. 
c+r, c c+r 

In addition to the boundary conditions in the Eqs. (9) and (Ii) the solution 

should also be convergent to Eqs. (14) - (16) if k becomes a constant of 

time. This simplifies the finding of the solution of Eq. 
e ~ L 

H ( t )  = ( 2 x - c + l )  �9 N 2 x ( O )  �9 e x p  ( ( c - 1 ) ' I k ( t ) )  
c c  

H c + t , c ( t )  = - 2 �9 ( 2 x - c )  �9 N 2 x ( O )  �9 e x p  ( e - I k ( t ) )  

H c + 2 , e ( t )  = ( 2 x - e - l )  �9 N 2 x ( O )  �9 e x p  ( ( c + l ) . I k ( t ) )  

H (t) = O , for r > 2 (c+r ~ 2x) 
c+r, c 

Here the function Ik(t) is the integral 

t 
Ik(t) = I (dk/ at') �9 t' dE' 

o 

which has a zero value for t = O 

(27), which is for 

( 2 8 )  

( 2 9 )  

(30) 

(31) 

(32) 

as well as for (dk/ dt') = 0 , in cot- 
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respondence with the boundary conditions �9 

Thus, for N (t) in Eq. (25) follows (L ~ c < 2x) : 
c (33) 

Nc(t)/ Nc(O) = (2x-c+i) �9 exp{ (c-i) �9 (Ik(t) - k(t) �9 t)}- 2 �9 (2x-c) 

�9 exp{c �9 (Ik(t) - k(t) �9 t)} + (2x-c-l) �9 exp{(c+l) �9 (Ik(t) - k(t) - t)} 

The result for N2x(t) is 

N2x(t)/ N2x(O) = exp{(2x-l) (Ik(t) - k(t) �9 t)} ( 34 ) 

The calculation of the average fragment length c (t) according to Eq.(17) 
n 

leads to the same expression as in Eq. (18), when one writes for the frac- 

tion of cleaved bonds in the considered case 

s o = i - exp (Ik(t) - k(t) �9 t) ( 35 ) 

Thus, the problem of finding the distribution of fragments with L and 
larger is reduced to the calculation of the integral in Eq. (32). 

5 
As an example, a linear temperature rise is assumed�9 Some authors have 
determined this experimentally under controlled conditions. With T O as 

the temperature at start (t=O) and ~ = dT/dt as the constant heating 

rate, the time can be transformed into the temperature 

t = (T-To)/ ~ ' (O ~ t ~ t I ; t I = temperature rise time) . ( 36 ) 

An ARRHENIUS equation might be assumed for k(t) as a function of the tem- 

perature k(T) = k ~ �9 exp -(AEk/ RT) , ( 37 ) 

where k o is a constant, A~ the activation energy for random chain clea- 

vage (cal/ mole), and R ~ 2 cal/ mole OK (the gas constant). 

It is convenient to introduce the dimensionless variable w = AEk/ RT. Then 

Eq. (32) becomes with Eq. (37) 

ko" AEk w' -w' 1 
Ik(t ) { ~ dw' (i -- ) �9 e �9 --~ } , ( 38 ) 

�9 R w o Wo w 

where w o = AEk/ RT o (t=O) , and w is calculated at time t . This func- 
tion Ik(t) is related to the exponential integral 

e-~___~ ' 
El(w) = 7 d~' ~, , which has been tabulated iO, II 

It is not necessary to use the tables when w and w o are large. The ac- 
tivation energy for chain cleavage in linear PE was reported to be about 70 
kcal/ mole 2 . For temperatures T<IOOO OK RT is less 2 kcal/ mole. Con- 

sequently w retains values greater than 35. In Eq. (38) integration by 
parts and expansion into a series is possible, where terms of higher order 
than (i/w) 2 are negligible. The product k(t).t can be transformed into 

a similar expression. 

At time t and the temperature T one obtains 

Ik(t) - k(t)-t ~ - R " t 2 k(To)) ( 39 ) _ AEk (T_To) (T 2- k(T) - T O 
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It is then possible to calculate the distribution in Eq. (33) and Eq. (34) 
as well as s o in Eq. (35). 

We use this result to calculate the average fragment length in the residue 
according to Eqs. (18) and (35) at the end of the temperature rise t I = 
(TI-To)/ ~ , when the temperature is T 1 . To simplify the calculations, 
the following assumptions are made: 

I) The chain length of the polymer at start was infinite, i.e. 2x -~= at t=O, 

2) no pyrolysis occurs at the temperatute T O , or k(To)<<k(T I) , 

3) i/<(tl)<<l . 

The last assumption makes it possible to expand the exponential function 
in Eq. (35) into a series, which leads in a first (linear) approximation 
to the expression 

Cn--(tl) ~ R-AEkT I T 1 I/ - -  - -  t I k(Tl) ( 40 
_ ( ) �9 (TI_T o) " . 

It is now assumed that for tSt I pyrolysis occurs under isothermal condi- 
tions with the temperature T 1 . For the number average chain length cor- 
responding to Eqs. (18) and (19) follows at time t2>t 1 

i/ Cn(t 2) = s o + (l-So)/ Cn(t I) ( 41 

So = I - exp -(k(Tl)'(t2-tl)) ( 42 

The pyrolysis time t 2 used in this expression is defined by c (t 2) = L 
(L>>I). At this time t 2 the fragments in the resldue are volatlllzable and 
do not decompose further. 

It is reasonable to consider the temperature risetime t I as shorter than 
the time interval (t2-t I) , where the pyrolysis occurs under isothermal 
conditions until the fragments have reached the size of about L. From the 
reported temperature risetime measurements i it is obvious that this as- 
sumption can be made if the final temperature is not very high. For t I < 
(t2-t I) the combination of Eqs. (41) and (42) with (40) yields 

__ __ AE k 
Cn(tl) / Cn(t2) > (R--~I") �9 (T I- To) / T 1 ( 43 ) 

Since AEk>>RT 1 , the average chain length at t I is considerably greater 
than L (equal ~--(to)) introduced as the upper limit for the volatiliza- 
�9 n m . . 

tlon. Under these conditions the finlte rlsetime t. should have no effect 
on the yield and the distribution of volatiles wit~ c<L. 

B. Short Chains 

For chains with 2x < L the time dependent volatilization has to be con- 
sidered too . This can be done by introducing k(t) as well as Pc(t) in- 
to the general differential equations (4) and (5). The solution Nc(t) can 
be written in the same form as Eq. (25) with Hc+ r c(t) as functions of 
time. This method is known as the varlatlon of the constant. 

It is interesting to know for the "parent peak" 2x how much has been vo- 
latilized during the temperature rise. The solution of Eq. (4) (c=2x) is 

N2x(t) = H2x,2x(t) - exp(12x(t)-t) ( 44 ) 
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12x(t) = - (2x-l) �9 k(t) - P2x(t) ( 45 ) 

This equation (44) leads to a differential equation for H2x,2x(t), which 
has the following solution 

t dk dP2x 
H2x,2x(t) = H2x,2x(O) �9 exp(/ dt't' {(2x-l) -- + -- }) ( 46 ) 

o dt' dt' 

Thus, the amount of normal alkane nC2x present in the pyrolyzer after 
time t from start is 

(47) 

N2x(t) = N2x(O) �9 exp{(2x-l)(Ik(t) - k(t)-t) + Ip2x(t) - P2x(t)-t}. 

Ik(t) was defined through Eq. (32). Similarly it is 

t 
Ip2x(t) = I (dP2x/ dt') �9 t'dt' ( 48 ) 

o 

To calculate the integral (48) the same procedure can be applied as with 
the integral Ik(t) . For the rate of evaporation, an exponential relati- 
onship with 2x can be assumed. This might be written in the following 
form 

P2x (T) = Pe " exp - (2x-AEp/RT) ( 49 ) 

with Pe as a constant (from extrapolation 2x + O or T + ~ ). ~Ep may 
be correlated to the cohesive energy of one -CH 2- group. For a polyethY[2 
lene in the liquid phase reported values are about I kcal/ mole -CH 2- 
Even for small chains the linearity between the cohesive energy of the 
chain and the chainlength has been proven as a good approximation. 

The integration can be carried out with 2x'~Ep/RT as a variable. If 2x 
is not too small, this variable also retains large values. Consequently 
the same kind of approximations as in the previous section (A) can be 

applied here. If volatilization at T O is neglected (P2x(To)<<P2x(Tl))as 
well as decomposition during the temperature rise (k(T)<<P2x(T)) for T<T I, 
it follows 

RT 1 T 1 

N2x(tl) / N2x(O) ~ exp - {2x-AE TI-To t I �9 P2x(Ti)} ( 50 ) 
P 

This equation describes the fraction of normal alkane which has not been 
volatilized before the temperature has reached the final value T 1 . This 
function varies strongly with 2x and converges rapidly to unity when 2x 
is increased. 

An application of this theory will be presented in a following paper. 
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